

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2610/1

Differential Equations (Mechanics 4)

Friday

14 JANUARY 2005

Morning

1 hour 20 minutes

Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer any three questions.
- · You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- Take g = 9.8 m s⁻² unless otherwise instructed.
- The total number of marks for this paper is 60.

- The differential equation $\frac{dy}{dx} + 2xy = e^{-(x-2)^2}$ is to be solved for x > 1. 1
 - (i) Find the general solution for y in terms of x. [7]
 - (ii) Find the particular solution subject to the condition y = 0 when x = 1. Show that y > 0 for x > 1. Sketch the solution curve for $x \ge 1$.
 - (iii) Given instead the condition that y is at its maximum value when x = 2, use the original differential equation to show that the maximum value of y is $\frac{1}{4}$.

Hence, or otherwise, find the particular solution. Sketch the solution curve. [7]

2 The wave function, y, of a radioactive particle satisfies the differential equations

$$\frac{d^2y}{dx^2} + 9y = 0 for x < 0,$$

$$\frac{d^2y}{dx^2} - (k - 9)y = 0 for x > 0.$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - (k - 9)y = 0 \qquad \text{for } x > 0$$

(i) In the case k = 25, find the general solution of each equation. [6]

The solutions found in part (i) satisfy the following conditions:

- (1) each solution gives $y = y_0$ when x = 0,
- (2) both solutions give the same value for $\frac{dy}{dx}$ when x = 0,
- (3) y is bounded for all values of x.
- (ii) Use these conditions to determine the arbitrary constants in the general solutions in part (i) in terms of y_0 . [8]
- (iii) Sketch the graph of y against x for the case $y_0 > 0$. [3]
- (iv) In the case k = 5, find the general solution for x > 0.

State with reasons whether or not the given conditions are enough to determine the arbitrary constants in this case. [3] Water is draining from a small hole near the base of a large barrel. At time t, the speed of the flow of water is $v \, \text{m s}^{-1}$, the volume of water in the barrel is $V \, \text{m}^3$ and the height of water above the hole is $x \, \text{m}$. The hole has a cross-section of area $0.0004 \, \text{m}^2$.

Torricelli's law states that $v = \sqrt{2gx}$.

Initially the height of water above the hole is 2 m.

(i) Show that
$$\frac{dV}{dx}\frac{dx}{dt} = -0.0004\sqrt{2gx}$$
. [3]

- (ii) The barrel is modelled initially by taking $V = \frac{5}{3}x$. Find x in terms of t. Calculate the time for the barrel to empty. [6]
- (iii) A refined model gives $V = x + x^2 \frac{1}{3}x^3$. Calculate the time for the barrel to empty. [6]
- (iv) To take account of fluctuations in the flow, the model is refined further to give

$$(1+2x-x^2)\frac{dx}{dt} = -0.0004\left(\sqrt{2gx} + 0.1\sin t\right).$$

Euler's method is used to estimate x. The algorithm is given by

$$x_{r+1} = x_r + h\dot{x_r}$$
 $t_{r+1} = t_r + h,$

where h is the step length. The following results are calculated.

t	x ·	ż
0	2	-0.00250
0.1	1.99975	
0.2		

Verify the calculations for the first step and then calculate one more step to estimate x when t = 0.2. [5]

4 The simultaneous differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} - 8x + 3y = 0\tag{1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} + 2x - 7y = 0\tag{2}$$

are to be solved.

(i) Eliminate y from the equations to show that
$$\frac{d^2x}{dt^2} - 15\frac{dx}{dt} + 50x = 0$$
. [5]

(ii) Find the general solution for x. Use this solution and equation (1) to find the corresponding general solution for y. [6]

Now consider the following simultaneous differential equations.

$$\frac{\mathrm{d}x}{\mathrm{d}t} - 8x + 3y = \mathrm{e}^{-t} \tag{3}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} + 2x - 7y = \mathrm{e}^{-t} \tag{4}$$

(iii) Given that these equations have a solution of the form $x = ae^{-t}$, $y = be^{-t}$, calculate the values of a and b. [5]

(iv) Denoting the solutions in part (ii) by x = f(t) and y = g(t), show that

$$x = f(t) + ae^{-t}$$

$$y = g(t) + be^{-t}$$

are the general solutions of the differential equations (3) and (4). [4]

Mark Scheme

- $1(i) I = \exp\left(\int 2x \, \mathrm{d}x\right)$
 - $=e^{x^2}$
 - $e^{x^2} \frac{dy}{dx} + 2x e^{x^2} y = e^{x^2 (x 2)^2}$
 - $\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{x^2} \ y \right) = e^{4x 4}$
 - $e^{x^2} y = \int e^{4x-4} dx$
 - $=\frac{1}{4}e^{4x-4}+A$
 - $y = e^{-x^2} \left(\frac{1}{4} e^{4x-4} + A \right)$

- M1
- A1
- M1 multiply
- F1 follow their integrating factor
- M1 integrate
- **A**1
- F1 divide by their *I* (must divide constant also)

- (ii) $0 = e^{-1} \left(\frac{1}{4} + A \right) \Rightarrow A = -\frac{1}{4}$
 - $y = \frac{1}{4}e^{-x^2} \left(e^{4x-4} 1 \right)$
 - $x > 1 \Rightarrow 4x 4 > 0 \Rightarrow e^{4x 4} > 1$
 - and $\frac{1}{4}e^{-x^2} > 0$ so y > 0

- M1 condition on y
- A1 cao
- M1 attempt inequality for y
- E1 fully justified
- B1 through (1,0) and y > 0 for x > 1
- B1 asymptotic to y = 0

- (iii) maximum $\Rightarrow \frac{dy}{dx} = 0$
 - $\Rightarrow 2xy = e^{-(x-2)^2}$
 - $x = 2 \Rightarrow 4y = 1 \Rightarrow y = \frac{1}{4}$
 - $\frac{1}{4} = e^{-4} \left(\frac{1}{4} e^4 + A \right)$
 - $\Rightarrow A = 0 \Rightarrow y = \frac{1}{4}e^{-(x-2)^2}$
 - 1/4

- M1
- M1 must use DE
- E1
- M1 substitute into GS for y
- A1 cao
- B1 general shape consistent with their solution
- B1 maximum labelled at $(2,\frac{1}{4})$

6

2(i) for $x < 0$, aux.eq	$\alpha^2 + 9 = 0 \Rightarrow \alpha = \pm 3j$
---------------------------	--

 $y = A\cos 3x + B\sin 3x$

for
$$x > 0$$
, $\frac{d^2 y}{dx^2} - 16y = 0$

$$\alpha^2 - 16 = 0$$

$$\alpha = \pm 4$$

$$y = C e^{-4x} + D e^{4x}$$

M1 imaginary root or recognise SHM equation

A1

B1 may be implied

M1

A1

F1 accept A,B again here but not in (ii)

6

8

(ii) (1) $A = y_0$

$$C + D = y_0$$

(2)
$$x < 0, \frac{dy}{dx} = -3A\sin 3x + 3B\cos 3x$$

$$x > 0$$
, $\frac{dy}{dx} = -4C e^{-4x} + 4D e^{4x}$

$$3B = -4C + 4D$$

(3) only e^{4x} is unbounded so D = 0

hence $C = y_0$

$$B = -\frac{4}{3} y_0$$

F1

F1

A1

B1

B1

B1

(iii)

B1 curve for x < 0

B1 curve for x > 0

B1 continuous gradient at x = 0 (must have reasonable attempt at each of x < 0 and x > 0)

(iv) $\frac{d^2y}{dx^2} + 4y = 0 \Rightarrow y = E\cos 2x + F\sin 2x$

bounded so (3) provides no equation

hence insufficient (3 equations, 4 unknowns)

B1

M1

A1

| :

3(i)	rate of flow = area × speed $\Rightarrow \frac{dV}{dt} = -0.0004\sqrt{2gx}$	M1	accept either in words or symbols for M1 but need both for E1	
	$dV dx = 0.0004 \sqrt{2} cm$	M1	use of chain rule	
	$\Rightarrow \frac{\mathrm{d}V}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = -0.0004\sqrt{2gx}$	E1	complete argument	
				3
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{5}{3} \Rightarrow \frac{5}{3} \frac{\mathrm{d}x}{\mathrm{d}t} = -0.0004\sqrt{2gx}$	B1		
	$\int \frac{5}{3} x^{-\frac{1}{2}} dx = \int -0.0004 \sqrt{2g} dt$	M1	separate	
	$\frac{10}{3}x^{1/2} = -0.0004\sqrt{2g}\ t + A$	M1	integrate	
	$t = 0, x = 2 \Rightarrow A = \frac{10}{3}\sqrt{2}$	M1	condition on x	
	$x = 2\left(1 - 0.00012\sqrt{g}\ t\right)^2$	A1	cao	
	$x = 0 \Longrightarrow t \approx 2660$	A1		
				6
(iii)	$\left(1 + 2x - x^2\right) \frac{\mathrm{d}x}{\mathrm{d}t} = -0.0004\sqrt{2gx}$	M 1	substitute for $\frac{dV}{dx}$	
	$\int (x^{-\frac{1}{2}} + 2x^{\frac{1}{2}} - x^{\frac{3}{2}}) dx = \int -0.0004 \sqrt{2g} dt$	M1	separate	
	$2x^{\frac{1}{2}} + \frac{4}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} = -0.0004\sqrt{2g}t + B$	M1 A1	integrate	
	$t = 0, x = 2 \Rightarrow B = \frac{46}{15}\sqrt{2} \approx 4.337$	M1	condition on x	
	$x = 0 \Rightarrow t \approx 2450$	A1		
				6
(iv)	$\dot{x}(0) = -0.0004(\sqrt{4g} + 0)/1 = -0.00250$	E1	must show working	•
	$x(0.1) = 2 - 0.00250 \times 0.1$	M1	use of algorithm	
	=1.99975	E1	must show working	
	$\dot{x}(0.1) = -0.00251$	B1		
	x(0.2) = 1.99950	B1		
				5

4.00				
4(i)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 8\frac{\mathrm{d}x}{\mathrm{d}t} - 3\frac{\mathrm{d}y}{\mathrm{d}t}$	M1	differentiate	
	$\frac{dt^2}{dt^2} = 8\frac{dt}{dt} - 3\frac{dt}{dt}$	A1		
	$=8\frac{dx}{dt}-3(-2x+7y)$	M1	substitute for $\frac{dy}{dt}$	
	Gi	1411	$\mathrm{d}t$	
	$=8\frac{dx}{dt}+6x-\frac{21}{3}\left(8x-\frac{dx}{dt}\right)$	M1	substitute for y	
	d^2r dr			
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 15\frac{\mathrm{d}x}{\mathrm{d}t} + 50x = 0$	E1		
				5
(ii)	$\alpha^2 - 15\alpha + 50 = 0$	M1	auxiliary equation	
	$\alpha = 5 \text{ or } 10$	A1		
	$x = Ae^{5t} + Be^{10t}$	F1	CF for their roots	
	$y = \frac{1}{3}(8x - \dot{x})$	M1	rearrange equation (1)	
	$= \frac{1}{3} \left(8Ae^{5t} + 8Be^{10t} - \left(5Ae^{5t} + 10Be^{10t} \right) \right)$	M1	substitute for x and \dot{x}	
	$=Ae^{5t}-\frac{2}{3}Be^{10t}$	A 1	cao	
	3			6
(iii)	$-ae^{-t} = 8ae^{-t} - 3be^{-t} + e^{-t}$	M1	substitute in (3)	•
	$-be^{-t} = -2ae^{-t} + 7be^{-t} + e^{-t}$	M1	substitute in (4)	
	-9a + 3b = 1, $2a - 8b = 1$	M1	compare coefficients and solve	
	$a = -\frac{1}{6}$	A1		
	$b = -\frac{1}{6}$	A1		
	6	711		5
(iv)	substituting f(t), g(t) into LHS gives zero	B1	stated (or substitution)	
	substituting solutions in (iii) gives e^{-t}	B1		
	as equations linear, substituting sums gives sum $0 + e^{-t} = e^{-t}$	E1	(or verified by substitution)	
	General solutions because two arbitrary constants as expected			
	for two first order equations.	E1		

Examiner's Report